JAVA Programming

Department of Computer Science
Milan Kumar Nayak
6370158954

Basudev Godabari Degree College
At /- Kesaibahal , Dist/- Sambalpur , Pin – 768228
bgdegreecollege@gmail.com ,Mob – 9438000807
 UNIT-1
History Of JAVA
 The history of Java is very interesting. Java was originally designed for interactive television, but it was too advanced technology for the digital cable television industry at the time. The history of Java starts with the Green Team. Java team members (also known as Green Team), initiated this project to develop a language for digital devices such as set-top boxes, televisions, etc. However, it was suited for internet programming. Later, Java technology was incorporated by Netscape.
The principles for creating Java programming were "Simple, Robust, Portable, Platform-independent, Secured, High Performance, Multithreaded, Architecture Neutral, Object-Oriented, Interpreted, and Dynamic". Java was developed by James Gosling, who is known as the father of Java, in 1995. James Gosling and his team members started the project in the early '90s.
Currently, Java is used in internet programming, mobile devices, games, e-business solutions, etc. There are given significant points that describe the history of Java.
1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language
project in June 1991. The small team of sun engineers called Green Team.
2) Initially designed for small, embedded systems in electronic appliances like set-top boxes.
3) Firstly, it was called "Greentalk" by James Gosling, and the file extension was .gt.
4) After that, it was called Oak and was developed as a part of the Green project.
Why Java named "Oak"?
5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like the U.S.A., France, Germany, Romania, etc.
6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak Technologies.
1) James Gosling, Mike Sheridan, and Patrick Naughton initiated the Java language project in June 1991. The small team of sun engineers called Green Team.
2) Initially designed for small, embedded systems in electronic appliances like set-top boxes.
3) Firstly, it was called "Greentalk" by James Gosling, and the file extension was .gt.
4) After that, it was called Oak and was developed as a part of the Green project.
Why Java named "Oak"?
5) Why Oak? Oak is a symbol of strength and chosen as a national tree of many countries like the U.S.A., France, Germany, Romania, etc.
6) In 1995, Oak was renamed as "Java" because it was already a trademark by Oak Technologies.

Why Java Programming named "Java"?
7) Why had they chosen java name for Java language? The team gathered to choose a new name. The suggested words were "dynamic", "revolutionary", "Silk", "jolt", "DNA", etc. They wanted something that reflected the essence of the technology: revolutionary, dynamic, lively, cool, unique, and easy to spell and fun to say.
According to James Gosling, "Java was one of the top choices along with Silk". Since Java was so unique, most of the team members preferred Java than other names.
8) Java is an island of Indonesia where the first coffee was produced (called java coffee). It is a kind of espresso bean. Java name was chosen by James Gosling while having coffee near his office.
9) Notice that Java is just a name, not an acronym.
10) Initially developed by James Gosling at Sun Microsystems (which is now a subsidiary of Oracle Corporation) and released in 1995.
11) In 1995, Time magazine called Java one of the Ten Best Products of 1995.
12) JDK 1.0 released in(January 23, 1996). After the first release of Java, there have been many additional features added to the language. Now Java is being used in Windows applications, Web applications, enterprise applications, mobile applications, cards, etc. Each new version adds the new features in Java.
What is Java
Java is a programming language and a platform. Java is a high level, robust, object-oriented and secure programming language.
Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the year 1995. James Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak was already a registered company, so James Gosling and his team changed the Oak name to Java.

What is Java ?
Java is a programming language and a platform. Java is a high level, robust, object-oriented and secure programming language.
Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the year 1995. James Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak was already a registered company, so James Gosling and his team changed the Oak name to Java.

Platform: Any hardware or software environment in which a program runs, is known as a platform. Since Java has a runtime environment (JRE) and API, it is called a platform.

Diffrence between C++ and JAVA
 There are many differences and similarities between the C++ programming language and Java. A list of top differences between C++ and Java are given below:
	Comparison Index
	C++
	Java

	Platform-independent
	C++ is platform-dependent.
	Java is platform-independent.

	Mainly used for
	C++ is mainly used for system programming.
	Java is mainly used for application programming. It is widely used in window, web-based, enterprise and mobile applications.

	Design Goal
	C++ was designed for systems and applications programming. It was an extension of C programming language.
	Java was designed and created as an interpreter for printing systems but later extended as a support network computing. It was designed with a goal of being easy to use and accessible to a broader audience.

	Goto
	C++ supports the goto statement.
	Java doesn't support the goto statement.

	Multiple inheritance
	C++ supports multiple inheritance.
	Java doesn't support multiple inheritance through class. It can be achieved by interfaces in java.

	Operator Overloading
	C++ supports operator overloading.
	Java doesn't support operator overloading.

	Pointers
	C++ supports pointers. You can write pointer program in C++.
	Java supports pointer internally. However, you can't write the pointer program in java. It means java has restricted pointer support in java.

	Compiler and Interpreter
	C++ uses compiler only. C++ is compiled and run using the compiler which converts source code into machine code so, C++ is platform dependent.
	Java uses compiler and interpreter both. Java source code is converted into bytecode at compilation time. The interpreter executes this bytecode at runtime and produces output. Java is interpreted that is why it is platform independent.

	Call by Value and Call by reference
	C++ supports both call by value and call by reference.
	Java supports call by value only. There is no call by reference in java.

	Structure and Union
	C++ supports structures and unions.
	Java doesn't support structures and unions.

	Object-oriented
	C++ is an object-oriented language. However, in C language, single root hierarchy is not possible.
	Java is also an object-oriented language. However, everything (except fundamental types) is an object in Java. It is a single root hierarchy as everything gets derived from java.lang.Object.

Note
· Java doesn't support default arguments like C++.
· Java does not support header files like C++. Java uses the import keyword to include different classes and methods.
C++ Example
File: main.cpp
1. #include <iostream>
2. using namespace std;
3. int main() {
4. cout << "Hello C++ Programming";
5. return 0;
6. }
Java Example
File: Simple.java
1. class Simple{
2. public static void main(String args[]){
3. System.out.println("Hello Java");
4. }
5. }
Features of Java
 The primary objective of Java programming language creation was to make it portable, simple and secure programming language. Apart from this, there are also some excellent features which play an important role in the popularity of this language. The features of Java are also known as java buzzwords.
[image: Java Features]A list of most important features of Java language is given below.

1. Simple
2. Object-Oriented
3. Portable
4. Platform independent
5. Secured
6. Robust
7. Architecture neutral
8. Interpreted
9. High Performance
10. Multithreaded
11. Distributed
12. Dynamic
Simple
Java is very easy to learn, and its syntax is simple, clean and easy to understand. According to Sun, Java language is a simple programming language because:
· Java syntax is based on C++ (so easier for programmers to learn it after C++).
· Java has removed many complicated and rarely-used features, for example, explicit pointers, operator overloading, etc.
· There is no need to remove unreferenced objects because there is an Automatic Garbage Collection in Java.
Object-oriented
Java is an object-oriented programming language. Everything in Java is an object. Object-oriented means we organize our software as a combination of different types of objects that incorporates both data and behavior.
Platform Independent

Java is platform independent because it is different from other languages like C, C++, etc. which are compiled into platform specific machines while Java is a write once, run anywhere language. A platform is the hardware or software environment in which a program runs.
Secured
Java is best known for its security. With Java, we can develop virus-free systems. Java is secured because:
· No explicit pointer
· Java Programs run inside a virtual machine sandbox
Robust
Robust simply means strong. Java is robust because:
· It uses strong memory management.
· There is a lack of pointers that avoids security problems.
· There is automatic garbage collection in java which runs on the Java Virtual Machine to get rid of objects which are not being used by a Java application anymore.
· There are exception handling and the type checking mechanism in Java. All these points make Java robust.
Architecture-neutral
Java is architecture neutral because there are no implementation dependent features, for example, the size of primitive types is fixed.
In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and 4 bytes of memory for 64-bit architecture. However, it occupies 4 bytes of memory for both 32 and 64-bit architectures in Java.
Portable
Java is portable because it facilitates you to carry the Java bytecode to any platform. It doesn't require any implementation.
High-performance
Java is faster than other traditional interpreted programming languages because Java bytecode is "close" to native code. It is still a little bit slower than a compiled language (e.g., C++). Java is an interpreted language that is why it is slower than compiled languages, e.g., C, C++, etc.
Distributed
Java is distributed because it facilitates users to create distributed applications in Java. RMI and EJB are used for creating distributed applications. This feature of Java makes us able to access files by calling the methods from any machine on the internet.
Multi-threaded
A thread is like a separate program, executing concurrently. We can write Java programs that deal with many tasks at once by defining multiple threads. The main advantage of multi-threading is that it doesn't occupy memory for each thread. It shares a common memory area. Threads are important for multi-media, Web applications, etc.
Dynamic
Java is a dynamic language. It supports dynamic loading of classes. It means classes are loaded on demand. It also supports functions from its native languages, i.e., C and C++.
Java supports dynamic compilation and automatic memory management (garbage collection).

Compling and Executing Java Program
In this page, we will learn how to write the simple program of java. We can write a simple hello java program easily after installing the JDK.
To create a simple java program, you need to create a class that contains the main method. Let's understand the requirement first.
The requirement for Java Hello World Example
	For executing any java program, you need to
· Install the JDK if you don't have installed it, download the JDK and install it.
· Set path of the jdk/bin directory. http://www.javatpoint.com/how-to-set-path-in-java
· Create the java program
· Compile and run the java program

Creating Hello World Example
Let's create the hello java program:
1. class Simple{
2. public static void main(String args[]){
3. System.out.println("Hello Java");
4. }
5. }
save this file as Simple.java
save this file as Simple.java
	To compile:
	javac Simple.java

	To execute:
	java Simple

[image: C:\Users\Milan Kumar Nayak\AppData\Local\Microsoft\Windows\INetCache\Content.Word\javacodecompile.png]

	
	

	
	

Parameters used in First Java Program
Let's see what is the meaning of class, public, static, void, main, String[], System.out.println().
· class keyword is used to declare a class in java.
· public keyword is an access modifier which represents visibility. It means it is visible to all.
· static is a keyword. If we declare any method as static, it is known as the static method. The core advantage of the static method is that there is no need to create an object to invoke the static method. The main method is executed by the JVM, so it doesn't require to create an object to invoke the main method. So it saves memory.
· void is the return type of the method. It means it doesn't return any value.
· main represents the starting point of the program.
· String[] args is used for command line argument. We will learn it later.
· System.out.println() is used to print statement. Here, System is a class, out is the object of PrintStream class, println() is the method of PrintStream class. We will learn about the internal working of System.out.println statement later.
Java Variables
A variable is a container which holds the value while the Java program is executed. A variable is assigned with a data type.
Variable is a name of memory location. There are three types of variables in java: local, instance and static.
There are two types of data types in Java: primitive and non-primitive.
Variable
Variable is name of reserved area allocated in memory. In other words, it is a name of memory location. It is a combination of "vary + able" that means its value can be changed.
[image: variables in java]
int data=50;//Here data is variable
Types of Variables
There are three types of variables in Java:
· local variable
· instance variable
· static variable
1) Local Variable
A variable declared inside the body of the method is called local variable. You can use this variable only within that method and the other methods in the class aren't even aware that the variable exists.
A local variable cannot be defined with "static" keyword.
2) Instance Variable
A variable declared inside the class but outside the body of the method, is called instance variable. It is not declared as static.
It is called instance variable because its value is instance specific and is not shared among instances.
3) Static variable
A variable which is declared as static is called static variable. It cannot be local. You can create a single copy of static variable and share among all the instances of the class. Memory allocation for static variable happens only once when the class is loaded in the memory.

Java Keywords
Java keywords are also known as reserved words. Keywords are particular words which acts as a key to a code. These are predefined words by Java so it cannot be used as a variable or object name.
List of Java Keywords
A list of Java keywords or reserved words are given below:
1. abstract: Java abstract keyword is used to declare abstract class. Abstract class can provide the implementation of interface. It can have abstract and non-abstract methods.
2. boolean: Java boolean keyword is used to declare a variable as a boolean type. It can hold True and False values only.
3. break: Java break keyword is used to break loop or switch statement. It breaks the current flow of the program at specified condition.
4. byte: Java byte keyword is used to declare a variable that can hold an 8-bit data values.
5. case: Java case keyword is used to with the switch statements to mark blocks of text.
6. catch: Java catch keyword is used to catch the exceptions generated by try statements. It must be used after the try block only.
7. char: Java char keyword is used to declare a variable that can hold unsigned 16-bit Unicode characters
8. class: Java class keyword is used to declare a class.
9. continue: Java continue keyword is used to continue the loop. It continues the current flow of the program and skips the remaining code at the specified condition.
10. default: Java default keyword is used to specify the default block of code in a switch statement.
11. do: Java do keyword is used in control statement to declare a loop. It can iterate a part of the program several times.
12. double: Java double keyword is used to declare a variable that can hold a 64-bit floating-point numbers.
13. else: Java else keyword is used to indicate the alternative branches in an if statement.
14. enum: Java enum keyword is used to define a fixed set of constants. Enum constructors are always private or default.
15. extends: Java extends keyword is used to indicate that a class is derived from another class or interface.
16. final: Java final keyword is used to indicate that a variable holds a constant value. It is applied with a variable. It is used to restrict the user.
17. finally: Java finally keyword indicates a block of code in a try-catch structure. This block is always executed whether exception is handled or not.
18. float: Java float keyword is used to declare a variable that can hold a 32-bit floating-point number.
19. for: Java for keyword is used to start a for loop. It is used to execute a set of instructions/functions repeatedly when some conditions become true. If the number of iteration is fixed, it is recommended to use for loop.
20. if: Java if keyword tests the condition. It executes the if block if condition is true.
21. implements: Java implements keyword is used to implement an interface.
22. import: Java import keyword makes classes and interfaces available and accessible to the current source code.
23. instanceof: Java instanceof keyword is used to test whether the object is an instance of the specified class or implements an interface.
24. int: Java int keyword is used to declare a variable that can hold a 32-bit signed integer.
25. interface: Java interface keyword is used to declare an interface. It can have only abstract methods.
26. long: Java long keyword is used to declare a variable that can hold a 64-bit integer.
27. native: Java native keyword is used to specify that a method is implemented in native code using JNI (Java Native Interface).
28. new: Java new keyword is used to create new objects.
29. null: Java null keyword is used to indicate that a reference does not refer to anything. It removes the garbage value.
30. package: Java package keyword is used to declare a Java package that includes the classes.
31. private: Java private keyword is an access modifier. It is used to indicate that a method or variable may be accessed only in the class in which it is declared.
32. protected: Java protected keyword is an access modifier. It can be accessible within package and outside the package but through inheritance only. It can't be applied on the class.
33. public: Java public keyword is an access modifier. It is used to indicate that an item is accessible anywhere. It has the widest scope among all other modifiers.
34. return: Java return keyword is used to return from a method when its execution is complete.
35. short: Java short keyword is used to declare a variable that can hold a 16-bit integer.
36. static: Java static keyword is used to indicate that a variable or method is a class method. The static keyword in Java is used for memory management mainly.
37. strictfp: Java strictfp is used to restrict the floating-point calculations to ensure portability.
38. super: Java super keyword is a reference variable that is used to refer parent class object. It can be used to invoke immediate parent class method.
39. switch: The Java switch keyword contains a switch statement that executes code based on test value. The switch statement tests the equality of a variable against multiple values.
40. synchronized: Java synchronized keyword is used to specify the critical sections or methods in multithreaded code.
41. this: Java this keyword can be used to refer the current object in a method or constructor.
42. throw: The Java throw keyword is used to explicitly throw an exception. The throw keyword is mainly used to throw custom exception. It is followed by an instance.
43. throws: The Java throws keyword is used to declare an exception. Checked exception can be propagated with throws.
44. transient: Java transient keyword is used in serialization. If you define any data member as transient, it will not be serialized.
45. try: Java try keyword is used to start a block of code that will be tested for exceptions. The try block must be followed by either catch or finally block.
46. void: Java void keyword is used to specify that a method does not have a return value.
47. volatile: Java volatile keyword is used to indicate that a variable may change asynchronously.
48. while: Java while keyword is used to start a while loop. This loop iterates a part of the program several times. If the number of iteration is not fixed, it is recommended to use while loop.
Operators in Java
	Operator Type
	Category
	Precedence

	Unary
	postfix
	expr++ expr--

	
	prefix
	++expr --expr +expr -expr ~ !

	Arithmetic
	multiplicative
	* / %

	
	additive
	+ -

	Shift
	shift
	<< >> >>>

	Relational
	comparison
	< > <= >= instanceof

	
	equality
	== !=

	Bitwise
	bitwise AND
	&

	
	bitwise exclusive OR
	^

	
	bitwise inclusive OR
	|

	Logical
	logical AND
	&&

	
	logical OR
	||

	Ternary
	ternary
	? :

	Assignment
	assignment
	= += -= *= /= %= &= ^= |= <<= >>= >>>=

Operator in Java is a symbol which is used to perform operations. For example: +, -, *, / etc.
There are many types of operators in Java as shown on the above.
· Unary Operator,
· Arithmetic Operator,
· Shift Operator,
· Relational Operator,
· Bitwise Operator,
· Logical Operator,
· Ternary Operator and
· Assignment Operator.
Constant in Java
A constant is a variable whose value cannot change once it has been assigned. Java doesn't have built-in support for constants.
A constant can make our program more easily read and understood by others. In addition, a constant is cached by the JVM as well as our application, so using a constant can improve performance.
To define a variable as a constant, we just need to add the keyword “final” in front of the variable declaration.
Syntax
final float pi = 3.14f;
The above statement declares the float variable “pi” as a constant with a value of 3.14f. We cannot change the value of "pi" at any point in time in the program. Later if we try to do that by using a statement like “pi=5.25f”, Java will throw errors at compile time itself. It is not mandatory that we need to assign values of constants during initialization itself.
In the below example, we can define the primitive data type (byte, short, int, long, float, double, boolean and char) variables as constants by just adding the keyword “final” when we declare the variable.
Data Types in Java
Data types specify the different sizes and values that can be stored in the variable. There are two types of data types in Java:
1. Primitive data types: The primitive data types include boolean, char, byte, short, int, long, float and double.
2. Non-primitive data types: The non-primitive data types include Classes, Interfaces, and Arrays.
Java Primitive Data Types
In Java language, primitive data types are the building blocks of data manipulation. These are the most basic data types available in Java language.

There are 8 types of primitive data types:
· boolean data type
· byte data type
· char data type
· short data type
· int data type
· long data type
· float data type
· double data type

	Data Type
	Default Value
	Default size

	boolean
	false
	1 bit

	char
	'\u0000'
	2 byte

	byte
	0
	1 byte

	short
	0
	2 byte

	int
	0
	4 byte

	long
	0L
	8 byte

	float
	0.0f
	4 byte

	double
	0.0d
	8 byte

	 Boolean Data Type
The Boolean data type is used to store only two possible values: true and false. This data type is used for simple flags that track true/false conditions.
The Boolean data type specifies one bit of information, but its "size" can't be defined precisely.
Example: Boolean one = false
Byte Data Type
The byte data type is an example of primitive data type. It isan 8-bit signed two's complement integer. Its value-range lies between -128 to 127 (inclusive). Its minimum value is -128 and maximum value is 127. Its default value is 0.
The byte data type is used to save memory in large arrays where the memory savings is most required. It saves space because a byte is 4 times smaller than an integer. It can also be used in place of "int" data type.
Example: byte a = 10, byte b = -20
Short Data Type
The short data type is a 16-bit signed two's complement integer. Its value-range lies between -32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum value is 32,767. Its default value is 0.
The short data type can also be used to save memory just like byte data type. A short data type is 2 times smaller than an integer.
Example: short s = 10000, short r = -5000
Int Data Type
The int data type is a 32-bit signed two's complement integer. Its value-range lies between - 2,147,483,648 (-2^31) to 2,147,483,647 (2^31 -1) (inclusive). Its minimum value is - 2,147,483,648and maximum value is 2,147,483,647. Its default value is 0.
The int data type is generally used as a default data type for integral values unless if there is no problem about memory.
Example: int a = 100000, int b = -200000

Long Data Type
The long data type is a 64-bit two's complement integer. Its value-range lies between -9,223,372,036,854,775,808(-2^63) to 9,223,372,036,854,775,807(2^63 -1)(inclusive). Its minimum value is - 9,223,372,036,854,775,808and maximum value is 9,223,372,036,854,775,807. Its default value is 0. The long data type is used when you need a range of values more than those provided by int.
Example: long a = 100000L, long b = -200000L
Float Data Type
The float data type is a single-precision 32-bit IEEE 754 floating point.Its value range is unlimited. It is recommended to use a float (instead of double) if you need to save memory in large arrays of floating point numbers. The float data type should never be used for precise values, such as currency. Its default value is 0.0F.
Example: float f1 = 234.5f
Double Data Type
The double data type is a double-precision 64-bit IEEE 754 floating point. Its value range is unlimited. The double data type is generally used for decimal values just like float. The double data type also should never be used for precise values, such as currency. Its default value is 0.0d.
Example: double d1 = 12.3
Char Data Type
The char data type is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or 0) to '\uffff' (or 65,535 inclusive).The char data type is used to store characters.
Example: char letterA = 'A'

JAVA Method Parameter Passing and scope
It is very important to understand how the parameters are passed from the calling method to the called method and how the return value is sent back to the calling method. As discussed in Basic Java Methods, the main method is the calling method and convertToCelsius is the called method.
public static void main(String s[])
{
 int a = 5;
 int b = 6;
 int c = sum(a, b);
}

public static int sum(int a, int b)
{
 int c = a + b;
 return c;
}public static void main(String s[])
{
 int a = 5;
 int b = 6;
 int c = sum(a, b);
}

public static int sum(int a, int b)
{
 int c = a + b;
 return c;
}
Here we have created a main method and a sum method. main method is calling method and sum is the called method. Please note the following points about these methods.
· The parameter names in the calling method and the called method need not be same as shown above. In the method sum, the parameters could be called x and y instead of a and b. Only the data types should be same.
· The name of the return variable also need not be same as the calling method. The return value c could have been z.
// Valid
public static int sum(int x, int y)
{
 int z = x + y;
 return z;
}
It is not necessary that we create a variable for returning, we can directly return with out creating the variable.
// Valid
public static int sum(int x, int y)
{
 return x + y;
}
· Only variables passed as parameters are accessible in the called method. For eg. the variable r created in the main method is not accessible in the sum method.
public static void main(String s[])
{
 int a = 5;
 int b = 6;
 int r = 21;
 int c = sum(a, b);
}

public static int sum(int a1, int b1)
{
 int c1 = a1 + b1;
 System.out.println(" r = " + r); // Compilation Error.
 return c1;
}

Type conversion in Java with Examples
Last Updated: 17-11-2019
When you assign value of one data type to another, the two types might not be compatible with each other. If the data types are compatible, then Java will perform the conversion automatically known as Automatic Type Conversion and if not then they need to be casted or converted explicitly. For example, assigning an int value to a long variable.
Widening or Automatic Type Conversion
Widening conversion takes place when two data types are automatically converted. This happens when:
· The two data types are compatible.
· When we assign value of a smaller data type to a bigger data type.
For Example, in java the numeric data types are compatible with each other but no automatic conversion is supported from numeric type to char or boolean. Also, char and boolean are not compatible with each other.

Example:

	class Test
{
 public static void main(String[] args)
 {
 int i = 100;

 // automatic type conversion
 long l = i;

 // automatic type conversion
 float f = l;
 System.out.println("Int value "+i);
 System.out.println("Long value "+l);
 System.out.println("Float value "+f);
 }
}

Output:
Int value 100
Long value 100
Float value 100.0
Narrowing or Explicit Conversion
If we want to assign a value of larger data type to a smaller data type we perform explicit type casting or narrowing.
· This is useful for incompatible data types where automatic conversion cannot be done.
· Here, target-type specifies the desired type to convert the specified value to.
[image: Narrowing or Explicit Conversion]
char and number are not compatible with each other. Let’s see when we try to convert one into other.
Example:
	//Java program to illustrate explicit type conversion
class Test
{
 public static void main(String[] args)
 {
 double d = 100.04;

 //explicit type casting
 long l = (long)d;

 //explicit type casting
 int i = (int)l;
 System.out.println("Double value "+d);

 //fractional part lost
 System.out.println("Long value "+l);

 //fractional part lost
 System.out.println("Int value "+i);
 }
}

Output:
Double value 100.04
Long value 100
Int value 100

	

Command Line Argument .
 The java command-line argument is an argument i.e. passed at the time of running the java program.The arguments passed from the console can be received in the java program and it can be used as an input.
So, it provides a convenient way to check the behavior of the program for the different values. You can pass N (1,2,3 and so on) numbers of arguments from the command prompt.
Simple java Program :
1. Sum of two numbers
public class AddTwoNumbers {

 public static void main(String[] args) {

 int num1 = 5, num2 = 15, sum;
 sum = num1 + num2;

 System.out.println("Sum of these numbers: "+sum);
 }
}
Output:
Sum of these numbers: 20

Using Command Line Argument.
import java.util.Scanner;
public class AddTwoNumbers2 {

 public static void main(String[] args) {

 int num1, num2, sum;
 Scanner sc = new Scanner(System.in);
 System.out.println("Enter First Number: ");
 num1 = sc.nextInt();

 System.out.println("Enter Second Number: ");
 num2 = sc.nextInt();

 sc.close();
 sum = num1 + num2;
 System.out.println("Sum of these numbers: "+sum);
 }
}

Output:
Enter First Number:
121
Enter Second Number:
19
Sum of these numbers: 140

image1.png
Distributed

Multithreaded

0 Features ©

Performance
Of Secured {
o Java ()

Interpreted

Dynamic

Platform
Independent

Architecture
Neutral

image2.png
Byte Code
Simplejava

Simple.class

image3.png
/

Reserved Area

image4.png
Data Type

Non-Primitive

—— String
Boolean Numeric Array
L— etc.
Character Integral
Integer Floating-point

boolean char byte short int long float double

image5.png
Double —> Float —> Long —> Int —> Short —> Byte

Narrowing or Explicit Conversion

